On the Proof of Lin’s Conjecture

Tor Helleseth

Department of Informatics
University of Bergen

Joint work with Honggang Hu, Shuai Shao, and Guang Gong

Rosendahl, Norway, Sept. 4, 2014
Outline

- Ideal two-level autocorrelation sequences (Difference sets)
 - Short history
 - Binary sequences
 - Nonbinary sequences
- The Lin conjecture
- Short history of the Lin conjecture
- Ideas behind proof of the Lin conjecture
Difference Sets

Definition

Let G be a group of order v. A (v, k, λ) difference set

$$D = \{d_1, d_2, \ldots, d_k\}$$

is a k-element subset of G such that every $x \neq 0$ can be written as $d_i - d_j = x$ in the same number, λ, of ways as d_i and d_j run through D. The difference set is said to be cyclic if the group G is cyclic.

Theorem

Let s_t be a binary sequence of length v that is the characteristic set of a difference set Z_v. The autocorrelation of s_t at shift τ satisfies

$$\theta(\tau) = \sum_{i=0}^{v-1} (-1)^{s_i + \tau - s_t} = \begin{cases} v - 4(k - \lambda) & \text{if } \tau \neq 0 \pmod{v} \\ v & \text{if } \tau = 0 \pmod{v} \end{cases}$$

If $(v, k, \lambda) = (2^m - 1, 2^{m-1} - 1, 2^{m-2} - 1)$ then sequence has two-level ideal autocorrelation with an out-of-phase value -1.
Binary ideal 2-level binary sequences before mid 90’s

- m-sequences: $s_i = Tr(\alpha^i)$, α primitive element in \mathbb{F}_2^n
- Legendre sequences
- GMW sequences
- Twin-prime sequences
- Hall sextic sequences

Binary ideal 2-level binary sequences after mid 90’s

- Conjectures: Gong, Gaal and Golomb (1997)
- Conjectures: No, Golomb, Gong, Lee and Gaal (1998)
- Conjecture: No, Chung and Yun (1998)
- Monomial o-polynomials: Maschietti (1998)
Two-level Autocorrelation and Walsh Transform

- $s_t = f(\alpha^i)$ binary sequence of period $2^m - 1$
- $F(x) = (-1)^f(x)$
- $\hat{F}(y) = \frac{1}{\sqrt{2^m}} \sum x (-1)^f(x) + Tr(yx)$
- $F(x) = \frac{1}{\sqrt{2^m}} \sum y \hat{F}(y)(-1)^{Tr(xy)}$

Let $\gcd(t, 2^m - 1) = 1$ and $a = \alpha^\tau$. The autocorrelation is:

\[
\theta_S(\tau) = \sum_{i=0}^{2^m-2} (-1)^{f(\alpha^{i+\tau})-f(\alpha^i)}
\]

\[
= -1 + \sum_{x \in GF(2^m)} F(ax)F(x)
\]

(Parseval) \[
= -1 + \sum_{y \in GF(2^m)} \hat{F}(ay)\hat{F}(y)
\]

\[
= -1 + \sum_{y \in GF(2^m)} \hat{F}(ay^t)\hat{F}(y^t)
\]

= -1 (if sums above are 0)
Finding two-level autocorrelation sequences

- \(S_k(x) = (-1)^{Tr(x^k)} \) where \(s_k(x) = Tr(x^k) \) and \(\gcd(k, 2^m - 1) = 1 \)

The autocorrelation is

\[
\theta_S(\tau) + 1 = \sum_{y \in GF(2^m)} \hat{S}_k(ay^t) \hat{S}_k(y^t)
\]

\[
= \sum_{x \in GF(2^m)} S_k(ax) S_k(x)
\]

\[
= \sum_{x \in GF(2^m)} (-1)^{Tr((a^k - 1)x^k)}
\]

\[
= 0
\]

To find a difference set it is sufficient to find a \(D \) with characteristic function \(f(x) \) such that

\[
\hat{F}(y) = \hat{S}_k(y^t)
\]

where \(\gcd(t, 2^m - 1) = 1 \).
A hyperoval is a set of \(2^m + 2\) points no three on a line. Every hyperoval can be represented as

\[
D(f) = \{(1, t, f(t))| t \in GF(2^m)\} \cup \{(0, 1, 0)\} \cup \{(0, 0, 1)\}
\]

where \(f\) is a permutation polynomial of degree \(\leq 2^m - 2\), \(f(0) = 0\), \(f(1) = 1\) and

\[
f_s(x) = (f(x + s) + f(s))/x, f_s(0) = 0
\]

is also a permutation polynomial. If \(x^k\) is a monomial then \(D(x^k)\) is called a monomial hyperoval

\(D(x^k)\) is a hyperoval iff \(gcd(k, 2^m - 1) = 1\) and \(x^k + x + a = 0\) has 0 or 2 solutions for all \(a \in GF(2^m)\).
Monomial hyperovals

- Singer: $k = 2^i$, $gcd(i, m) = 1$
- Segre: $k = 6$, $m \geq 5$ odd
- Glynn 1a: $k = 2 \frac{m+1}{2} + 2 \frac{3m+1}{4}$ if $m = 1 \pmod{4}$, $m \geq 7$
- Glynn 1b: $k = 2 \frac{m+1}{2} + 2 \frac{m+1}{4}$ if $m = 3 \pmod{4}$, $m \geq 7$
- Glynn 2: $k = 3 \cdot 2 \frac{m+1}{2} + 4$
Theorem

Let $D(x^k)$ be a monomial hyperoval (i.e., $\gcd(k, 2^m - 1) = 1$ and $x^k + x$ a two-to-one map on $GF(2^m)$). Let

$$D = GF(2^m) \setminus \{x^k + x | x \in GF(2^m)\}.$$

Then the characteristic sequence of D has ideal two-level autocorrelation.

Proof.

(Part 1) Let $F(x) = (-1)^{f(x)}$ where $f(x)$ be characteristic sequence of D. Sufficient to show that

$$\hat{F}(y) = \hat{S}_k(y^t)$$

for some t where $\gcd(t, 2^m - 1) = 1$. \(\square\)
Proof.

\[\hat{F}(y) = \frac{1}{\sqrt{2^m}} \sum_{x \in GF(2^m)} (-1)^f(x) + Tr(yx) \]

\[= \frac{1}{\sqrt{2^m}} \sum_{x \notin D} (-1)^{Tr(yx)} - \frac{1}{2^m} \sum_{x \in D} (-1)^{Tr(yx)} \]

\[= \frac{2}{\sqrt{2^m}} \sum_{x \notin D} (-1)^{Tr(yx)} \]

\[= \frac{1}{\sqrt{2^m}} \sum_{x \in GF(2^m)} (-1)^{Tr(y(x^k + x))} \]

\[= \frac{1}{\sqrt{2^m}} \sum_{z \in GF(2^m)} (-1)^{Tr(z^k + y^{k-1}z)} \]

\[= \frac{1}{\sqrt{2^m}} \hat{S}_k(y^{k-1}/k) \text{ for some } t \text{ where } gcd(t, 2^m - 1) = 1 \]
Autocorrelation for odd p

- p is a prime number
- $S = \{s_i\}$ is a p-ary sequence with period N
- For any $0 \leq \tau < N$, the autocorrelation of S at shift τ is defined by

$$C_S(\tau) = \sum_{i=0}^{N-1} \omega_p^{s_i+\tau-s_i}, \text{ where } \omega_p = e^{2\pi i/p}$$

- If $C_S(\tau) = -1$ for any $0 < \tau < N$, then S is called an ideal two-level autocorrelation sequence
Recent nonbinary ideal 2-level autocorrelation sequences

- Ternary ($n = 3k$): (Helleseth, Kumar and Martinsen (2001))
 \[s_i = \text{Tr}(\alpha^i + \alpha^{di}), \quad d = 3^{2k} - 3^k + 1 \]
- Dillon (2002)
- Arasu, Dillon and Player (2004)
- Conjectures: Ludkowski and Gong (2001)
Lin’s Conjecture

\[n = 2m + 1 \]

\[\alpha \text{ is a primitive element in } \mathbb{F}_{3^n} \]

\[S = \{ s_t \} \text{ is a ternary sequence defined by} \]

\[s_t = Tr(\alpha^t + \alpha^{(2 \cdot 3^m + 1)t}) \]

for \(t = 0, 1, 2, \cdots \)

Conjecture (1998, Huashih Alfred Lin)

\(S \) has an ideal two-level autocorrelation.

Remark

A proof was claimed by Arasu, Dillon and Player in (2001) but the proof has never been published.
Lin’s conjecture: Components in the proof

- The Second order Decimation-Hadamard transform
- Gauss sums
- Stickelberger’s theorem
- Combinatorial arguments
Let \(q = 3^n, \ 0 < v, t < q - 1 \) and \(\gamma \in \mathbb{F}_{3^n}^* \).

For any integers \(0 < v, t < q - 1 \), we define

\[
\hat{f}(v, t)(\lambda, \gamma) = \sum_{x, y \in \mathbb{F}_q} \omega_p \text{Tr}(\lambda y - y^t x + \gamma x^v)
\]

\(\hat{f}(v, t)(\lambda, \gamma) \) is the second-order decimation-Hadamard (multiplexing) transform (DHT) of \(\text{Tr}(x) \).
Let

\[\hat{f}(v, t)(\lambda, \gamma) = \sum_{x, y \in \mathbb{F}_q} \omega_p^{Tr(\lambda y - y^t x + \gamma x^v)} \]

If

\[\hat{f}(v, t)(\lambda, \gamma) \in \{ q \omega_p^i \mid i = 0, 1, \cdots, p - 1 \}, \lambda \in \mathbb{F}_q, \gamma \in \mathbb{F}_q^* \]

then \((v, t)\) is called a realizable pair of \(f(x)\).

Let

\[\omega_p^{g(x, \gamma)} = \frac{1}{q} \hat{f}(v, t)(x, \gamma), x \in \mathbb{F}_q. \]

g\((x, \gamma)\) is called a realization of \(f(x)\) under \((v, t)\) and \(\gamma\).
Gauss Sums over Finite Fields

- $\psi(x) = \omega_p \text{Tr}(x)$
- For any multiplicative character χ over \mathbb{F}_q, the Gauss sum $G(\chi)$ over \mathbb{F}_q is defined by

 $$G(\chi) = \sum_{x \in \mathbb{F}_q} \psi(x)\chi(x)$$

- $G(\overline{\chi}) = \chi(-1)\overline{G(\chi)}$
- $G(\chi^p) = G(\chi)$
- If χ is trivial, then $G(\chi) = -1$
- if χ is nontrivial, then $G(\chi)\overline{G(\chi)} = q$

$$\omega_p^{\text{Tr}(y)} = \frac{1}{q-1} \sum_{\chi \in \mathbb{F}_q^*} G(\chi)\overline{\chi(y)}$$
Ideal Two-Level Autocorrelation Sequences

- Let $U = \{x^{vt} | x \in \mathbb{F}_3^{*n}\}$.
- Let $\Lambda = \{\gamma_0, \gamma_1, \cdots, \gamma_{d-1}\}$ be a set satisfying $\mathbb{F}_3^{*n} = \gamma_0 U \cup \gamma_1 U \cup \cdots \cup \gamma_{d-1} U$.
- Let α be a primitive element of \mathbb{F}_3^{n}.
- For any $0 \leq i < 3^n - 1$, α^i can be written in the form of $\alpha^i = \gamma \lambda^{vt}$, where $\gamma \in \Lambda$ and $\lambda \in \mathbb{F}_3^{n}$.
- We construct a ternary sequence $T = \{t_i\}$ by
 \[t_i = g(v, t)(\lambda, \gamma), \ i = 0, 1, 2, \cdots \]

Theorem

Let (v, t) be a realizable pair. Then the ternary sequence $T = \{t_i\}$ is an ideal two-level autocorrelation sequence.
Realizable pairs and Gaussian sums

Using expression for $\omega^{Tr(y)}$ in terms of Gaussian sums.

$$\hat{f}(v, t)(\lambda, \gamma) = \sum_{x, y \in \mathbb{F}_q} \omega_p^{Tr(\lambda y - y^t x + \gamma x^v)}$$

$$= \frac{1}{3^n - 1} \left(\sum_{x \in \mathbb{F}^*_n} \omega_p^{Tr(\gamma x^v)} + T \right)$$

where

$$T = \sum_{\chi^d \neq 1} G(\chi^{vt}) G(\overline{\chi}^v) G(\chi) \overline{\chi}^{vt}(\lambda) \overline{\chi}(\gamma) \overline{\chi}^v(-1)$$

- If $wt(jvt) - wt(-jv) + wt(j) > 2n$ for all $jd \neq 0 \pmod{3^n - 1}$ then $\hat{f}(v, t)(\lambda, \gamma) \equiv 0 \pmod{3^n}$.

- Average value of $|\hat{f}(v, t)(\lambda, \gamma)| = 3^n$

- This leads to $\hat{f}(v, t)(\lambda, \gamma) = 3^n \omega^i$ for $i = 0, 1, 2$ i.e., (v, t) realizable.
Prime Ideal Factorization

\[\mathbb{Z}[\omega_p, \omega_{q-1}] \]

\[(\pi) = Q_1 Q_2 \cdots Q_t \]

\[\mathbb{Z}[\omega_p] \quad \mathbb{Z}[\omega_{q-1}] \]

\[p_i = Q_i^{p-1} \]

\[(p) = (\pi)^{p-1} \]

\[(p) = p_1 p_2 \cdots p_t \]
(p) is a prime ideal in \(\mathbb{Z} \)

Let \(\pi = \omega_p - 1 \)

(\(\pi \)) is a prime ideal in \(\mathbb{Z}[\omega_p] \)

(\(p \)) = (\(\pi \))^{p-1} in \(\mathbb{Z}[\omega_p] \)

(\(\pi \)) = \(Q_1 Q_2 \cdots Q_t \) in \(\mathbb{Z}[\omega_p, \omega_{q-1}] \), where \(Q_i \) are prime ideals in \(\mathbb{Z}[\omega_p, \omega_{q-1}] \), and \(t = \phi(p^n - 1)/n \)

(\(p \)) = (\(Q_1 Q_2 \cdots Q_t \))^{p-1} in \(\mathbb{Z}[\omega_p, \omega_{q-1}] \)

(\(p \)) = \(p_1 p_2 \cdots p_t \) in \(\mathbb{Z}[\omega_{q-1}] \)

\(p_i \) is the (\(p - 1 \))-th power of a prime ideal in \(\mathbb{Z}[\omega_p, \omega_{q-1}] \)
For each Q, we have

$$\mathbb{Z}[\omega_p, \omega_{q^{-1}}]/Q \cong \mathbb{F}_q$$

because $[\mathbb{Z}[\omega_p, \omega_{q^{-1}}]/Q : \mathbb{Z}/(p)] = n$.

There is one special multiplicative character χ on \mathbb{F}_q satisfying

$$\chi(x)(\text{mod } Q) = x.$$

This character is called the Teichmüller character.
Stickelberger’s Theorem

For any $0 \leq k < q - 1$, let $k = k_0 + k_1 p + \cdots + k_{n-1} p^{n-1}$ be the p-adic representation of k.

Let $wt(k) = k_0 + k_1 + \cdots + k_{n-1}$, and $\sigma(k) = k_0!k_1!\cdots k_{n-1}!$.

Theorem

For any $0 < k < q - 1$, we have

$$G(\chi_p^{-k}) \equiv -\frac{\pi^{wt(k)}}{\sigma(k)} \pmod{\pi^{wt(k)+p-1}},$$

where χ_p is the Teichmüller character.
Main Theorems

- \mathbb{F}_{3^n}
- Let $f(x) = Tr(x)$.
- $d = \gcd(v, 3^n - 1) > 1$, and $\gcd(t, 3^n - 1) = 1$.

Theorem

(v, t) is a realizable pair if and only if \(wt(jvt) + wt(-jv) + wt(j) > 2n \) for any $0 < j < 3^n - 1$ with $jd \not\equiv 0 (mod \ 3^n - 1)$.

Theorem

For any $\gamma \in \mathbb{F}_{3^n}^*$, the realization of $f(x)$ under (v, t) and γ is given by

$$g(v, t)(\lambda, \gamma) = \sum_{wt(jvt) + wt(-jv) + wt(j) = 2n + 1, 0 < j < 3^n - 1} \frac{(-1)^j \sigma(jvt) \sigma(-jv) \sigma(j)(\gamma \lambda^{vt})^j}{j}.$$

Tor Helleseth Lin’s Conjecture
The Sequence Conjectured by Lin

- \(n = 2m + 1 \)
- \(v = 2(3^{m+1} - 1) \)
- \(t = (3^n + 1)/4 \)
- (Then \(\gcd(v, 3^m - 1) = 2 \) and \(\gcd(t, 3^m - 1) = 1 \))

Theorem

\[\text{wt}(jvt) + \text{wt}(−jv) + \text{wt}(j) > 2n \] for any \(0 < j < 3^n − 1 \).

Theorem

\[\text{wt}(jvt) + \text{wt}(−jv) + \text{wt}(j) = 2n + 1 \] if and only if \(j \in \{3^i, (2 \cdot 3^m + 1)3^i | i = 0, 1, \cdots, n−1} \}.

Theorem

Lin’s conjecture is true.
Thanks for your attention!